Virginia Tech® home

Dong S. Ha (하동삼)

Professor
  • Founding Director of Multifunctional Integrated Circuits & Systems (MICS)
Dong S. Ha
302 Whittemore (0111)
Dept. of Electrical and Computer Engineering, Virginia Tech
Blacksburg, VA 24061
USA

Research Interests:

  • Circuits, ICs, and Systems Design (Analog and RF)


Research Topics:

  • Energy Harvesting Circuits and ICs
  • Power Management Circuits and ICs
  • High Temperature RF Circuits, ICs, and Systems (for Oil and Gas Exploration and Spacecraft)


Teaching Interests:

  • Analog IC Design
  • RF IC Design
  • Power Management Circuits for Energy Harvesting


Education:

  • Ph.D., Electrical and Computer Engineering, University of Iowa, 1986
  • M.S., Electrical and Computer Engineering, University of Iowa, 1984
  • B.S., Electrical Engineering, Seoul National University, 1974
  • Narrative Biography

Recognition:

  • IEEE Fellow


Publications in 2019:

  • Google Scholar Profile
  • List of recent publications
  • R. Reed, F. Lohrabi Pour and D. Sam Ha, "Design of a Multi-Tone Wireless Power Transmitter Using Second Harmonic Extraction of a Voltage-Controlled Oscillator," 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2021, pp. 894-898, doi: 10.1109/MWSCAS47672.2021.9531904.
  • J. Wang, J. Kim and D. S. Ha, "Powerline Energy Harvesting Circuit with a Desaturation Controller for a Magnetic Core," 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2021, pp. 220-223, doi: 10.1109/MWSCAS47672.2021.9531890.
  • Chong, J., Pour, F. L., & Ha, D. S. (2021). Input-resistance reduced gm-boosted common-gate transimpedance amplifier for 100 Gb/s optical communication. Microelectronics Journal114, 105155.
  • Chong, J., Pour, F. L., & Ha, D. S. (2021). A 0.13-μm CMOS resonator-based frequency-doubling mechanism for clock recovery in a full-rate 40 Gb/s optical receiver. Microelectronics Journal114, 105137.
  • L. Wu and D. S. Ha, "An Adjustable-delay SSHC Method for Inductorless Load Regulation for Piezoelectric Energy Harvesting," 2021 9th International Symposium on Next Generation Electronics (ISNE), 2021, pp. 1-4, doi: 10.1109/ISNE48910.2021.9493632.
  • Liu, S., Ha, D. S., Shen, F., & Yi, Y. (2021). Efficient neural networks for edge devices. Computers & Electrical Engineering92, 107121.
  • J. Wang and D. S. Ha, "A Wide Input Power Line Energy Harvesting Circuit for Wireless Sensor Nodes," 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021, pp. 1-5, doi: 10.1109/ISCAS51556.2021.9401513.
  • R. Reed, F. L. Pour and D. S. Ha, "An Energy Efficient RF Backscatter Modulator for IoT Applications," 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021, pp. 1-5, doi: 10.1109/ISCAS51556.2021.9401639.
  • F. L. Pour and D. S. Ha, "A Temperature Compensated Variable Gain Phase Shifter Based on GaN HEMTs," 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021, pp. 1-5, doi: 10.1109/ISCAS51556.2021.9401271.
  • J. M. Salem, F. L. Pour and D. Sam Ha, "A High-Temperature Model for GaN-HEMT Transistors and its Application to Resistive Mixer Design," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 2, pp. 581-591, Feb. 2021, doi: 10.1109/TCSI.2020.3039907.
  • Y. Lin, Z. Gao and D. S. Ha, "IC Design for a Two-Mode Buck Converter Optimized for Both Light and Heavy Load," 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9181198.
  • J. Wang, J. Li and D. S. Ha, "Energy Harvesting Circuit for Indoor Light Based on the FOCV and P&O Schemes with an Adaptive Fraction Approach," 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9180491.
  • An, H., Ha, D. S., & Yi, Y. (2020, September). Powering next-generation industry 4.0 by a self-learning and low-power neuromorphic system. In Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication (pp. 1-6).
  • R. Reed, F. L. Pour and D. S. Ha, "An Efficient 2.4 GHz Differential Rectenna for Radio Frequency Energy Harvesting," 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), 2020, pp. 208-212, doi: 10.1109/MWSCAS48704.2020.9184600.
  • A. Jaquan Dancy, J. Li and D. Sam Ha, "Split-Capacitor Boost Converter Operating in Boundary Conduction Mode with Impedance Matching for Kinetic Energy Harvesting," 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), 2020, pp. 203-207, doi: 10.1109/MWSCAS48704.2020.9184507.
  • R. Reed, F. L. Pour and D. S. Ha, "An Efficient 2.4 GHz Differential Rectenna for Radio Frequency Energy Harvesting," 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), 2020, pp. 208-212, doi: 10.1109/MWSCAS48704.2020.9184600.
  • F. L. Pour and D. Sam Ha, "A Temperature Compensated 5 GHz GaN on SiC Power Amplifier," 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), 2020, pp. 549-553, doi: 10.1109/MWSCAS48704.2020.9184518.
  • N. Turner, F. L. Pour and D. S. Ha, "Design of a High Temperature 2.37 GHz Voltage-Controlled Oscillator With GaN-on-SiC HEMTs," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 5153-5161, Dec. 2020, doi: 10.1109/TCSI.2020.3010768.
  • L. Wu, and D. S. Ha, ‘‘A Self-Powered Piezoelectric Energy Harvesting Circuit with an Optimal Flipping Time SSHI and Maximum Power Point Tracking,’’ IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, issue 10, pp. 1758-1762, June 2019.
  • G. Wang, D. S. Ha, and K. G. Wang ‘‘A scalable environmental thermal energy harvester based on solid/liquid phase-change materials,’’ Applied Energy, vol. 250, pp. 1468-1480, Sep. 2019.
  • Q. Brogan, and D. S. Ha, “A Single Stage Boost Converter for Body Heat Energy Harvesting with Maximum Power Point Tracking and Output Voltage Regulation,” in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), May 2019.
  • B. Kerrigan, F. L. Pour, and D. S. Ha, “System Design of a High-Temperature Downhole Transceiver: Part I – Receiver,” in 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 818-821, Aug. 2019.
  • B. Kerrigan, F. L. Pour, and D. S. Ha, “System Design of a High-Temperature Downhole Transceiver: Part II–Transmitter,” in 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 822-825, Aug. 2019.
  • L. Wu, C. Guo, Z. Chen, and D. S. Ha, “An SSHC Circuit Integrated with an Active Rectifier for Piezoelectric Energy Harvesting,” in 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 377-381, Aug. 2019. 

Personal: Family, Favorites, Hobbies, and More