
International Symposium on Low Power Electronics and Design (ISLPED), pp. 60-63, August, 2001, Huntington Beach, CA

60

A Low-Power Motion Estimation Block for Low Bit-Rate
Wireless Video

R. Steven Richmond II
Hewlett-Packard Company

3404 E. Harmony Road M/S 88
Fort Collins, CO 80525

E-mail: str@fc.hp.com

Dong Sam Ha
Virginia Tech VLSI for Telecommunications (VTVT) Lab

Bradley Dept. of Electrical and Computer Eng.
Virginia Tech, Blacksburg VA 24061

E-mail: ha@vt.edu Web: www.ee.vt.edu/ha

ABSTRACT
This paper presents a low-power design of a motion estimation
block targeting for a low-bit rate video codec H.263. The block is
based on the Four-Step Search algorithm. The proposed design
offers up to 38 % power reduction for logic blocks alone over a
“baseline” implementation of the Four-Step Search (4SS) algorithm
and up to 58 % power reduction over a baseline model of the Three-
Step Search (TSS) algorithm. In addition, our design reduces power
dissipation of an on-chip memory by up to 32% over the 4SS and
27% over the TSS.

1. INTRODUCTION
Motion estimation is one of the most important steps of any video
encoding system. Motion estimation takes a reference block of
pixels and attempts to find a suitable match for the candidate block,
so re-encoding of the entire block can be eliminated. As result, the
system can transmit only the difference across the channel, saving
bandwidth.

For mobile video encoding applications, the motion estimation
causes a couple of technical problems. First, with even a modestly
sized search area, the number of computations can grow large very
quickly. Second, the motion estimation consumes nearly 50 % of
the power of a video encoding system [1]. Therefore, it is critical
that a motion block be designed to dissipate a small amount of
power for portable devices.

A motion estimation operation finds a motion vector, indicating the
best direction of the motion, and a rating of the “fitness” of that
motion vector. A variety of methods exist to compute the fitness of
a motion vector. The method most widely used is the simple SAD
(Sum-of-Absolute-Differences) method. SAD computes the sum of
the differences in pixel values between the reference and the
candidate blocks. The equation for a SAD rating for a given motion
vector (x,y) is given as such:

∑∑
= =

++−=
N

j

N

i

yjxiprevjicurryxSAD
0 0

),(),(),((1)

where curr(i,j) is a pixel in the current (reference) frame and
prev(i+x,j+y) is a pixel offset by (x,y) in the previous (candidate)

frame.

A variety of algorithms exist to perform motion estimation. The
most simple and direct is the full-search block matching (FSBM)
algorithm. It calls for searching the entire set of all possible motion
vectors and always yields the optimum motion vector with the
lowest SAD value. However, searching the entire area is time
consuming and may be unnecessary for low-quality video. A variety
of hierarchical algorithms were proposed to alleviate the problem.
These algorithms include the Three-Step Search (TSS) algorithm
and the Four-Step Search (4SS) algorithm [2], [3]. These algorithms
search a few points initially and refine the search over time until
possibly an optimum vector is found. They increase the throughput
by searching fewer points, and hence dissipate less power,
compared to the FSBM, but the solutions are not necessarily
optimum. However, since the quality of low bit-rate video such as
the H.263 video codec is often degraded to meet the low bandwidth
requirement, an optimal solution may not be always necessary. The
circumstance was exploited for the proposed design to reduce power
dissipation.

The rest of this paper is organized as follows. Section 2 describes
the 4SS algorithm employed in the proposed design. Section 3
explains implementation of a baseline 4SS algorithm, on which our
low-power design is based. The baseline model also served as a
reference for power improvement for the proposed design. We
present proposed low-power design techniques in Section 4 and.
experimental results on power estimation in Section 5. Finally,
Section 6 concludes the paper.

2. FOUR-STEP SEARCH ALGORITHM
The 4SS algorithm attempts to address some of the problems with
the TSS algorithm such as a fixed number of search steps and
center-biasing [3]. A salient point of the 4SS is that all the four steps
of the algorithm are not necessary for each motion estimation
operation. The algorithm aborts early for motion vectors close to the
center (0,0) of the search area.

The four step algorithm proceeds as follows [3]:

1. Using a search box of 5x5, search the area centered around
(0,0).

2. If the previous step’s winner is NOT the zero vector centered
at (0,0), search again with a 5x5 box centered at step 1’s
winner, otherwise proceed to Step 4.

3. Repeat Step 2 centered at Step 2’s winner.
4. Search using a 3x3 box around the previous step’s winner.

The following Figure 1 illustrates two example searches finding
motion vectors at (+3, -7) and (-7, +7).

The 4SS algorithm needs 17 searches in the best case. The worst

Copyright 2001 Association for Computing Machinery. ACM acknow-
ledges that this contribution was authored or co-authored by a contractor
or affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
ISLPED'01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008.$5.00.

International Symposium on Low Power Electronics and Design (ISLPED), pp. 60-63, August, 2001, Huntington Beach, CA

61

case for the 4SS algorithm is 27 search points compared to 25 for
the TSS. If most motion vectors are around at the center of the
search area, the 4SS performs better than the TSS.

Figure 1. Example Search Patterns for 4SS [3]

3. BASELINE MODEL IMPLEMENTATIONS
The ITU-T H.263 video codec standard is for low bit-rate video
systems. It provides acceptable picture quality and frame rate for
video streams at a multiple of 64 Kbps or less than 64 Kbps.

Our baseline system design is based on the implementation (which
is efficient in hardware) presented in [4] adapted for the 4SS
algorithm. Since our system is targeted for H.263, the macroblock
size is set to 16x16 pixels conforming to the H.263 standard. The
search area is [-7,+7] by [-7,+7]. Figure 2 shows a block diagram of
our motion estimation block. Several important blocks of the block
diagram are explained in the following:

Current Block Memory

V
D
U

Previous Search Area Memory

Control Unit

Comparator Logic

PE0 PE1 PE2
V
D
U

Figure 2. Block Diagram of the Motion Estimation Block [4]

3.1 Processing Element (PE)
The three PEs operates on a set of three motion vectors at a time.
(Readers may refer to the block diagram of the low-power version
of a PE shown in Figure 3.) A subtractor and an absolute value unit
compute the difference between a pair of pixels under
consideration. The difference is accumulated by an adder and a
register, whose final output is the computed SAD value.

3.2 Variable Delay Unit (VDU)
The implementation of the VDUs is a simplified model of the one
presented in [4]. The delay unit can delay an 8 bit value (which is a
pixel value) for either 1 or 2 clocks. Note that the 2 delay cycle
mode effectively implements a 5x5 search box, or steps 1-3 of the
4SS algorithm. The 1 cycle delay mode implements a 3x3 search

box, or step 4 of the 4SS algorithm.

3.3 Control Unit
The control unit consists of counters to address the memory, a
comparator logic to select which SAD value to use, and a finite state
machine that controls the rest of the system.

3.4 Memory
The current pixel memory consists of 256 bytes to store all pixel
values. The previous frame search area consists of 900 pixel values,
to enable searching the entire search space. For the purposes of this
implementation, a 1kB memory is considered for the previous frame
search area memory.

4. PROPOSED LOW-POWER DESIGN
TECHNIQUES
This section describes low-power techniques incorporated in our
motion estimation block. The first two techniques are the
elimination of redundant searches and an early termination of the
SAD calculation. These are architectural enhancements that reduce
the number of necessary computations without compromising the
quality of the solution. The last two methods, zero-bias and the
reduced range arithmetic, can possibly degrade the quality of the
solution while reducing computation.

4.1 Elimination of Redundant Searches
As the 4SS algorithm proceeds to the 2nd and 3rd steps of the
algorithm, substantial SAD calculations are unnecessary. Those
SADs have already been computed or are found to be useless. If
those calculations can be removed in subsequent steps, a power
savings can be achieved. Generally speaking, six searches are
redundant when a side point of a search box wins, and four searches
are redundant when selecting a corner point of the search box [5].
Note that this method is more effective for video with large motion
that usually requires the 2nd and 3rd steps of the algorithm to
complete the motion vector calculation.

In our low-power design, logic has been added to detect this case
and remove the redundant SAD calculations from the subsequent
step. A special bit is flagged if the SAD value of a PE is the lowest
found so far. During the next search step, the bit is checked. If it is
flagged, ENABLE signal to the AND gates in Figure 3 becomes
"0," to gates off all inputs to the PE to “0.” It also disables its
accumulator register, effectively stopping all switching activity for
that SAD calculation.

4.2 Early Termination of SAD Calculation
The SAD calculation requires accumulation of differences of all
individual pairs of pixels. During the accumulation, if the
intermediate value of the SAD becomes larger than the best SAD
(i.e., the smallest value) found so far, the SAD computation can be
terminated immediately. This scheme is most effective for smaller
motion video, in which an optimum SAD is usually found quickly
around the center area, and, hence, subsequent SAD calculations
can be terminated early.

This method is implemented with a simple comparator built-in to
each PE. The “best” SAD found so far is supplied to each PE
(represented as signal SAD_IN in Figure 3). If the calculated SAD
for that PE becomes greater than the best SAD found so far, the

International Symposium on Low Power Electronics and Design (ISLPED), pp. 60-63, August, 2001, Huntington Beach, CA

62

comparator shuts off the inputs to the PE and disables the
accumulator register as well, effectively shutting off all the
switching activity associated with the SAD calculation.

OVERFLO W F/F

CO MP(12)

_

ABS

+

REG(12)

ENABLE

PREVIO US CURREN T

SAD _IN

SAD_OUT

Figure 3. PE with Power-Saving Features

4.3 Zero-Bias Method
The zero-bias method artificially reduces the SAD value of the
center point in the search box during the 1st through the 3rd steps.
The artificial reduction of the value by a certain bias value may
result in a faster termination of the search, while hopefully coming
to an acceptable solution.

Since PE1 is responsible for the SAD value of the center point, the
SAD value of the center point is subtracted by a bias value before
being applied to the comparator logic in Figure 1. One necessary
design consideration is that the early termination of SAD
calculation method explained in the above should not be applied for
the center point. Note that early cutoff of the SAD calculation
results in an incorrect SAD value. The bias value was set to 100
based on our experiment.

4.4 Reduced Range Arithmetic
Our experiment on SAD values reveals that the best SAD values
rarely exceed 12 bits for the 4SS algorithm and are often of much
smaller bit-widths. In addition, H.263 does not use the motion
estimation if the SAD value is too large (called INTRA mode). The
observation offers a possibility to reduce the bit width of PEs for
SAD computation, which is 16 for the baseline model to
accommodate all possible SAD values.

To handle the case where the SAD may “overflow.” PEs employ an
overflow detection scheme, which simply compares the MSB of the
previous sum with the newly computed sum. If the previous sum
has an MSB of ‘1’ and the current sum has an MSB of ‘0’, then an
overflow condition has occurred. A flip-flop is flagged to gate off
any further inputs and to disregard the current SAD value during the
output evaluation phase. The proposed PE with both comparator
and reduced precision arithmetic logic is shown in Figure 3.

5. EXPERIMENTAL RESULTS
This section reports experimental results of three baseline (FSBM,

TSS, and 4SS) motion estimation systems and the proposed one in
terms of video quality, gate count, and power consumption. To
measure the video quality and to collect other statistical data, an
H.263 software encoder/decoder system was developed at the
VTVT laboratory of Virginia Tech. Peak signal-to-noise ratio
(PSNR) was used as a quantitative measure of video quality. The
baseline and proposed systems were coded in VHDL and
synthesized with a 0.35 µm CMOS standard cell library operating at
3.3V. The power estimation was performed at the gate level using a
commercial tool. Three QCIF (176x144 pixels) video clips, "Suzie,"
"Carphone," and "Foreman,", were used for our experiment. Suzie
and Carphone are low-motion video clips, while Foreman contains
some high motion scenes.

5.1 Video Quality
Table 1 shows PSNR of four different motion estimation systems.
The four systems achieve similar PSNRs for all the three video. The
largest difference between the proposed system and the FSBM
system is for Foreman, which is about 0.5 dB. It should be noted
that degradation of the video quality, if any, for the last three
systems, was unnoticeable compared with the FSBM system.

Table 1. PSNR of Various Systems (dB)

Suzie Carphone Foreman
FSBM 32.575 28.780 27.722
TSS 32.476 28.618 27.199
4SS 32.458 28.744 27.346

Prop 32.451 28.866 27.213

5.2 Gate Count
The gate counts of the four different systems are reported in Table
2. The gate count in the table denotes the number of equivalent
NAND2 gates without considering the memory block. The last row
in the table indicates the relative gate count (in percentile) of each
system compared with that of the FSBM system.

Table 2. Gate Counts of Various Systems

FSBM TSS 4SS Prop.
9583 3301 2828 3331

100 % 50.1 % 30.0 % 34.8 %

As expected the FSBM system has the highest circuit complexity,
but it achieves the highest throughput. The 4SS requires less
hardware than the TSS (mostly due to the fact that the VDUs shrink
in size). The proposed system requires extra logic for power savings
features and hence the circuit complexity is slightly higher than that
of the 4SS system. We noticed that the PEs takes about 49% of the
total gate count for the proposed system, VDUs about 10 %, and the
controller about 39%.

5.3 Power Estimation
We considered power dissipation of logic blocks and memory
blocks separately. The power for logic blocks was estimated
through gate level simulation. The power consumed by the
memory was estimated based on SRAM power statistics (such as
power dissipation associated with read and write operations) in [6]
and from RTL simulations of the systems.

International Symposium on Low Power Electronics and Design (ISLPED), pp. 60-63, August, 2001, Huntington Beach, CA

63

Power dissipation of logic blocks (without memory blocks) of the
three baseline systems is shown in Table 3. The table includes the
power consumed by major blocks of the circuit for later
comparison with the proposed system. Notice that there are
miscellaneous logic blocks not reported in the table.

Table 3. Power Estimation for Baseline Models (mW)

Baseline
Systems

Suzie Carphone Foreman

PEs 23.25 22.69 21.15
Controller 1.45 1.44 1.44

FSBM

Total 25.93 25.33 23.88
PEs 3.445 3.252 3.009
VDUs 0.987 0.967 0.966
Controller 0.785 0.786 0.785

TSS

Total 6.633 6.428 6.202
PEs 2.335 2.231 3.394
VDUs 0.396 0.387 0.656
Controller 0.506 0.510 0.801

4SS

Total 3.858 3.758 5.853

As expected the TSS and the 4SS systems dissipate much less
power than the FSBM system, and PEs are the major source of
power consumption for all the three systems. The table illustrates
power dissipation for the 4SS system depends heavily on the video
processed, while the power dissipation of the TSS system remains
roughly the same. The 4SS system dissipates over 40% less power
than the TSS model for low motion video, Suzie and Carphone.
However, the difference is small for large motion video Foreman.

Next, we examined the effectiveness of each low-power design
technique described earlier and the overall power saving of
proposed system which combines all the presented methods. Those
results are shown in Table 4.

Table 4. Power Estimation for Low-Power Techniques (mW)

Model Suzie Carphone Foreman
PEs 1.856 1.862 2.321
VDUs 0.339 0.343 0.544
Controller 0.550 0.556 0.863

Elimination of
Redundant Search

Total 3.467 3.491 4.875
PEs 1.947 1.656 3.114
VDUs 0.375 0.367 0.624
Controller 0.504 0.508 0.798

Early Termination
of SAD

Calculation Total 3.520 3.232 5.638
PEs 2.137 2.065 3.165
VDUs 0.354 0.350 0.604
Controller 0.483 0.493 0.787

Zero-Bias

Total 3.523 3.472 5.466
PEs 2.091 1.854 2.471
VDUs 0.372 0.360 0.523
Controller 0.485 0.485 0.671

Reduced Range
Arithmetic

Total 3.565 3.320 4.525
PEs 1.399 1.213 1.690
VDUs 0.310 0.324 0.429
Controller 0.479 0.524 0.670

Proposed System
(Combinted)

Total 2.786 2.714 3.634

From the table, elimination of the redundant search is the
most effective, especially for the large-motion video. It is
notable that the early termination of SAD calculation works
best on Carphone. The zero-bias method resulted in an

average power savings.

Table 5 compares power consumption of both logic and memory
blocks of the three baseline systems and the proposed system.

Table 5. Power Estimation of the Four Systems (mW)

Suzie Carphone Foreman
Logic Memory Logic Memory Logic Memory

FSBM 25.93 8.99 25.33 8.99 23.88 8.99
TSS 6.63 6.65 6.43 6.65 6.20 6.65
4SS 3.86 5.65 3.76 5.74 5.85 8.41

Prop. 2.79 4.86 2.71 4.91 3.63 5.69

The proposed system offers considerable power savings over the
other three systems. Power reduction for logic blocks ranges from
28 % to 40 % over the 4SS system and 41 % to 58% over the TSS
system. Memory power saving of the proposed block is sensitive
to the activity of video. The power saving on a memory block is
14% over the 4SS block for Suzie and 32% for Foreman. Note
that Foreman contains several high motion scenes. Details on
power estimation on memory blocks as well as logic blocks are
available in [5].

6. CONCLUSION
This paper presents methods to presents low-power design
techniques for a motion estimation block targeted for H.263 video
codec. The proposed techniques were implemented based on the
4SS algorithm, and power savings were estimated at the gate
level.

7. REFERENCES
[1] Vasily G. Moshnyaga, “A New Architecture for

Computationally Adaptive Full-Search Block-Matching
Motion Estimation.” Proceedings of the 1999 IEEE
International Symposium on Circuits and Systems VLSI,
vol.4, pp.219-22, 1999.

[2] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro,
“Motion-Compensated Interframe Coding for Video
Conferencing.” IEEE 1981 National Telecommunications
Conference. Innovative Telecommunications - Key to the
Future, vol.4, pp.G5.3/1-5, 1981.

[3] Lai-Man Po and Wing-Chung Ma, “A Novel Four-Step
Search Algorithm for Fast Block Motion Estimation.” IEEE
Transactions on Circuits & Systems for Video Technology,
vol.6, no.3, pp.313-17, June 1996.

[4] Alessandra Costa, Alessandro De Gloria, Paolo Faraboschi,
and Filippo Passaggio, “A VLSI Architecture for
Hierarchical Motion Estimation.” IEEE Transactions on
Consumer Electronics, vol.41, no.2, pp.248-57, May 1995.

[5] R. S. Richmond, "A Low-Power Design of Motion
Estimation Blocks for Low Bit-Rate Wireless Video
Communications," M.S. Thesis, Virginia Polytechnic
Institute and State University, Blacksburg, VA, USA, March
2001.

[6] Meenatchi Jagasivamani, “Development of a Low-Power
SRAM Compiler.” M.S. Thesis, Virginia Polytechnic
Institute and State University, Blacksburg, VA, USA, August
2000.

