
 IEEE ASIC/SOC Conference, September 2000, Washington, D.C.

 i

DESIGN AND SYNTHESIS OF BUILT-IN SELF-TESTABLE
TWO-DIMENSIONAL DISCRETE COSINE TRANSFORM CIRCUITS

Han Bin Kim

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303

E-mail: hanbin.kim@eng.sun.com

Dong Sam Ha

Virginia Tech VLSI for Telecommunications (VTVT)

Bradley Dept. of Electrical and Computer Eng.
Virginia Tech, Blacksburg VA 24061

E-mail: ha@vt.edu Web: www.ee.vt.edu/ha

 ABSTRACT
We present design of a two-dimensional (2-D) discrete
cosine transform (DCT) circuit with built-in self-test (BIST)
capability. After modifying an existing fast 2-D DCT
algorithm to make it more flexible, we synthesized the data
path and the controller using our high-level BIST synthesis
tool and incorporated scan design to other modules. Our
design achieves high fault coverage at small cost of area
overhead and system performance degradation.

 I. INTRODUCTION

Built-in self-test (BIST) embeds a test pattern generator
(TPG) and a signature register (SR). BIST has become
popular for logic circuit testing as well as embedded
memory testing.

A high-level BIST synthesis tool generates a data path and
a controller in the register-transfer (RT) level with BIST
capability by reconfiguring existing registers. A high-level
BIST synthesis is effective for testing data intensive
circuits, especially DSP (Digital Signal Processing)
circuits.

In this paper, we present a design of a two-dimensional (2-
D) discrete cosine transform (DCT) circuit with built-in self-
test (BIST) capability. The DCT algorithm is widely used
to compress images. It is, for example, employed in JPEC
and MPEC. Our design procedure is as follows: We
modified an existing one-dimensional (1-D) DCT
algorithm first and then applied our high-level BIST
synthesis tool [1] to generate a data path and a controller
with BIST. We designed other modules (such as I/O
interface modules and a memory transposition module)
manually to implement a 2-D DCT circuit and then
incorporated scan design to the modules.

 II. BACKGROUND

A. One-Dimensional DCT Algorithm
Since DCT is a separable transformation process, the 2-D
DCT can be performed by two separate 1-D DCT
processes: a 1-D DCT in the row direction followed by a
1-D DCT in the column direction. Several

implementations adopted this approach due to its simple
structure and low hardware complexity [2],[3]. However,
the approach requires a transposition memory to store and
to rearrange the sequence of data for the second 1-D DCT;
this degrades of the performance in speed. A different 2-D
DCT implementation, presented in [4], eliminates the need
for a transposition memory. It improves the performance
at the cost of higher circuit complexity.

We used the former approach to implement the 2-D DCT,
which performs in three steps: 1-D DCT, and then a
memory transposition followed by another 1-D DCT. The
formula for the 1-D DCT is given below:

)(1)0(
1

0
∑
−

=
⋅=

N

n
nx

N
X (1)

 ∑
−

=

 +
⋅⋅=

1

0 2
)12(

cos)(2)(
N

n N
knnx

N
kX π

, k=1, 2, …7 (2)

where x(n) represents a pixel value, X(k) represents the
transformed value, and N is 8 for the 8×8 block size.

B. Fast DCT Algorithm
Chen et al. proposed a method to improve the original
DCT formula described above [5]. The improved one has
fewer operations to increase the speed and to reduce the
circuit complexity. Chen et al’s method is known to be one
of the fastest DCT algorithms and is partly employed in
our implementation. We describe Chen's algorithm briefly
below.

An N-point 1-D DCT algorithm involves N×N matrix
calculations. The N×N matrix calculations in equations (1)
and (2) can be decomposed into the two sets of equations
shown in (3) and (4) for N=8 by inspection [2],[5]. The
first set contains even indexed terms and the second set the
odd indexed terms. The decomposition reduces the
number of multiplications from N2 to N2/2, which reduces
64 multiplications to 32 multiplications for N=8. It is
important to note that the decomposition produces the
same result as the original formula defined in [1] and [2].

 IEEE ASIC/SOC Conference, September 2000, Washington, D.C.

 ii

+
+
+
+

−−
−−

−−=

)4()3(
)5()2(
)6()1(
)7()0(

)6(
)4(
)2(
)0(

xx
xx
xx
xx

fccf
aaaa
cffc
aaaa

X
X
X
X

 (3)

−
−
−
−

−−
−

−−−=

)4()3(
)5()2(
)6()1(
)7()0(

)7(
)5(
)3(
)1(

xx
xx
xx
xx

bdeg
dgbe
ebgd
gedb

X
X
X
X

 (4)

If the two-level multiply-add structure is converted to a
multiple-level one by rearranging operations, the number
of multiplications is further reduced to 16. Refer to [5] for
details of the method.

III. DESIGN OF 2-D DCT

A. Optimization of 1-D DCT Algorithm
The fast DCT algorithm described in the previous section
requires a matched inverse DCT (IDCT) algorithm. That
is, if data are compressed using the general 1-D DCT
algorithm defined in equations (1) and (2), the fast IDCT
algorithms cannot be used for decompression. To avoid
the incompatibility problem, we modified the algorithm in
our design, which increases the number of operations
slightly.

The data flow graph shown in Fig. 1 is the modified DCT
algorithm employed in our implementation. It has the
same structure as Chen’s algorithm only for even-indexed
terms, which require eight multiplications. The number of
multiplications required for odd-indexed terms remains the
same (which is 16) as specified in equation (3) and (4).
The total number of multiplications necessary for our
implementation is 24, whereas it is 16 for Chen’s
algorithm.

+

+

+

+

+

+

-

-

-

+

+

+

+

+

+

+

-

+

+

+

b
d
e

g

d

-g
-b
-e

e
-b
g

d

g

-e

d
-b

a
a

-a

x

0

1

2

3

4

5

6

7

X
0

4

2

6

1

3

5

7

-1

-1

f
c
-c

-f

a

Figure 1: Data flow graph of 1-D DCT algorithm

We applied our high-level BIST synthesis tool called
ADVBIST_h to the data flow graph in Fig. 1 and
generated a RT-level data path and a controller [1].

B. Structure and Operation of a 2-D DCT Circuit
Fig. 2 shows the block diagram of a 2-D DCT circuit.
Each row of an 8×8 image block is loaded serially through
DIN port of a serial-to-parallel (ser2par) conversion
module, and a 1-D DCT operation is performed for the
row. The result is stored in the transposition memory.
Upon completely processing the eight rows, 1-D DCT
operations are performed column by column in the
transposition memory. The result of each column 1-D
DCT operation is outputted serially through DOUT port of
a parallel-to-serial (par2ser) conversion module.

1-D
DCT

Trans.
Memory

ROWACK

8x1616

SEN
DIN

P
EN

16
DOUT

ISEL

ser2par par2ser

8x16

COLACK

C
on

tro
lle

r

ROWACK
COLACK
SEN
PEN
ISEL
SEL
REN

SEL REN

Figure 2: Block diagram of our 2-D DCT circuit

Fig. 3 shows the architecture for our 1-D DCT data path
and the controller. The multiplexer-based architecture is
employed for the data path, and a finite state machine
(FSM) is used for the controller. The system is clocked by
single system clock.

BIST

Controller (FSM) Module

Mux

Reg
Mux

Module

Mux

Reg
Mux

BIST

Data Path

B[0:2]

SIN
SOUTTEST

din[0:15] dout[0:15]

ren
ctlm

CLK

S[0:1]

Figure 3: Architecture for our 1-D DCT circuit

 IEEE ASIC/SOC Conference, September 2000, Washington, D.C.

 iii

IN0

ROWACK

COLACK

OUT00,0 0,1 0,7

1,0 1,1 1,7

7,0 7,1 7,7

16 16 16
IN1 IN7

OUT1

OUT7

16

16

16

Figure 4: Schematic of the transposition memory

The structure of transposition memory is shown in Fig. 4.
A transposition memory consists of an 8×8 register array
in which each register is 16-bit long. Data are filled into
the array in row-wise from top, and are emptied in
column-wise in the right side. Two control signals,
ROWACK and COLACK, determine the direction of the
data movement.

IV. DESIGN-FOR-TEST TECHNIQUES APPLIED

A. TPGs and SRs
We implemented a TPG as shown in Fig. 5 by modifying a
built-in logic block observer (BILBO) [6]. Our TPG has
three meaningful functions such that normal operation,
scan, and test pattern generation as shown in Table 1. The
major difference between our TPG and the original
BILBO is that the inputs Z15 – Z0 are blocked for our TPG
in test pattern generation mode; this is necessary for
pseudo-random pattern generation. We used the original
BILBO for signature analysis.

DQ

Q2

M
U

X0
1

Q15 Q14

B1
B0
Si So

Q3 Q1 Q0

Z15 Z14 Z3 Z2 Z1 Z0

DQ DQ DQ DQ DQ

Figure 5: Schematic of modified 16-bit TPG

Table 1: Operating modes of our 16-bit TPG

B0 B1 Modes
1 1 Normal function
0 0 Shift register
1 0 Test pattern generation

B. Testing of the Data Path
We defer description on testing of data path modules to
Section V, which also covers experimental results
measured from the layout.

C. Testing of the Transposition Memory
We aim to test stuck-at faults of the registers in the
transposition memory. Our approach is to march through
all-0-patterns to detect stuck-at 1 faults and then all-1-
patterns to detect stuck-at 0 faults. After test patterns are
scanned into the registers in the rightmost column, a
register (i, j) copies from its left neighbor register (i, j-1)
on every clock in the memory testing mode; the registers
in the rightmost column are copied into scan registers in
the data path module.

The operation of the testing process is as follows. First,
all-0-patterns are scanned into the registers in the
transposition memory module, whose registers are shaded
in Fig. 4. Next, eight clocks are applied to the module in
the memory testing mode. The patterns march through the
array and are captured in the output registers. After
switching to the scan mode, the contents of the output
registers are scanned out for examination. The scheme
achieves 100 % stuck-at fault coverage.

D. Testing of the Controller
The controller circuit consists of a 9-bit counter and an
associated combinational logic. The combinational logic
receives the content of the counter and generates 66
control signals.

The counter serves as a TPG in our BIST mode. Test
responses on the control signals are compacted in space to
32 outputs and then compressed in time using two existing
SRs in the data path. Fig. 6 shows the structure of the
controller after incorporation of BIST. The XOR gates in
the left MISR (Multiple Input Signature Register)
compacts test responses in space. The fault coverage
reaches 97.0 % for 50 patterns and remains the same after
the 50 patterns. Hence, we apply 50 test patterns
(generated by the counter) to test the controller.

Counter

CLB

CLK
RST

ROWACK

REN

MISR

COLACK

MISR

Figure 6: Schematic of the controller

E. Testing of the I/O Conversion Modules.
We apply an all-0-test pattern to primary inputs
INS(0:15), which are inputs of the serial-to-parallel
converter. Then we apply eight clocks to march the all-0-

 IEEE ASIC/SOC Conference, September 2000, Washington, D.C.

 iv

pattern through the eight 16-bit registers in the converter.
The result is latched into a scan register in the data path
module and scanned out for examination. We repeat the
same process for the all-1-test pattern. Testing of the
parallel-to-serial module is similar. We scan in a test
pattern into a scan register in the module and apply 7
clocks. The test response is examined on primary outputs
DOUT(0:15). The scheme achieves 100 % stuck-at fault
coverage.

F. Overall Test Schedule
The six dedicated control signals, TEST, B[0:2], and
S[0:1], are used to control ten different modes of
operations. (Refer to Fig. 3.) Four BIST sessions are
allocated. to test six arithmetic modules (two adders, two
subtractors, and two multipliers) in the data path. Four
other test sessions include controller test mode, the
transposition memory test mode, serial-to-parallel
converter test mode, and parallel-to-serial converter test
mode. The remaining two modes are normal mode and the
scan mode.

V. EXPERIMENTAL RESULTS

A. Application of High-Level BIST Synthesis
15 control steps were scheduled for the completion of the
1-D DCT operation, and 6 arithmetic modules were
assigned for the operations. Our high-level BIST synthesis
tool ADVBIST_h was applied in which the number of test
sessions was set to 4 [1]. The data path generated by
ADVBIST_h was built-in self-testable with four TPGs and
two SRs.

B. Testing of Data Path
Fig. 7 shows BIST configurations for testing of the data
path. (Only resources that are related to BIST are shown
in the figure.) All the BIST registers are connected
through a single scan chain to initialize TPGs and to scan
out signatures of the test responses captured in SRs. Four
BIST test sessions are used for testing six arithmetic
modules as described earlier, and the modules and BIST
registers are shown in Table 2. For each test session,
initial test patterns are scanned in, the target modules are
tested, and test responses are scanned out. All related
control signals are generated from the controller. The fault
coverage of adders and the subtractors reaches 100 % with
40 and 50 test patterns, respectively. The fault coverage of
the multipliers reaches 99.0 % for 50 test patterns and
increases to 99.65 % for 200 test patterns. We used 150
test patterns for the multipliers; This achieves 99.6 % of
fault coverage.

S22 M23 M24 S25 A26 A27

R0 R1 R3 R14

R2 R11

SCAN_IN

SCAN_OUT

TPGTPG

SR

TPG

SR

TPG

11 14 12 19 18 13 17 1615 22 20 21

1 7

Figure 7: BIST configurations for the testing of DCT data

paths

Table 2: Test schedule

Session Module TPG TPG SR
0 S25 R1 R14 R11
1 S22 R0 R1 R2

M23 R0 R3 R2 2
M24 R3 R0 R11
A26 R3 R1 R11 3
A27 R1 R0 R2

C. Logic & Layout Design
The resultant BIST data path and the control unit were
described in VHDL and were synthesized to obtain a gate
level circuit. The circuit was placed and routed using an
HP 0.5 µm CMOS standard cell library with triple metal
layers. We also implemented a circuit without BIST in a
similar manner to measure the overhead of the BIST
design. The characteristics of the two circuits are
summarized in Table 3. Fig. 8 shows final layout of 2-D
DCT circuit with BIST.

Table 3: Characteristics of two chips

Description w/o BIST w/ BIST
Area of the core logic 10.84

mm2
11.92
mm2

Max. operable clock rate 32.4 MHz 30.8 MHz
Area overhead - 9.95 %
Clock speed degradation - 5.2 %
Equiv. NAND2 gate counts
 of the data path 9926 10956
 of the control unit 317 553
 of the memory unit 10,030 12451
Total 22,612 27,160

 IEEE ASIC/SOC Conference, September 2000, Washington, D.C.

 v

Figure 8: Layout of 2-D DCT circuit with BIST

VI. CONCLUSION

In this paper, we described design of a 2-D DCT circuit.
Our high-level BIST synthesis tool was applied to
implement the data path and the controller. Scan design was
applied to other modules. The area overhead of the DFT
including BIST is 9.95%, which is tolerable in industry.

REFERENCES
[1] H.B. Kim and D.S. Ha, “A High-Level BIST

Synthesis Method Based on a Region-wise Heuristic

for an Integer Linear Programming,” IEEE
International Test Conference, pp. 903-912, Sept.
1999.

[2] A. Madisetti and A.N. Wilson, Jr., "A 100 MHz 2-D
8x8 DCT/IDCT Processor For HDTV Applications, "
IEEE Trans. Circuits and Systems for Video
Technology, vol. 5, pp 158-165, Apr. 1995.

[3] T. Xanthopoulos and A.P. Chandrakasan, “A Low-
Power IDCT Macrocell for MPEG-2 MP@ML
Exploiting Data Distribution Properties for Minimal
Activity,” IEEE Journal of Solid-State Circuits, vol.
34, no. 5, pp. 693-703, May 1999.

[4] V. Srinivasan and K.J.R. Liu, "VLSI Design of High-
Speed Time-Recursive 2-D DCT/IDCT Processor for
Video Application", IEEE Trans. on Circuits and
Systems for Video Technology, vol. 6, no 1, pp.87-96,
Feb. 1996

[5] W.H. Chen, C.H. Smith, and S.C. Fralick, “A Fast
Computational Algorithm for the Discrete Cosine
Transform,” IEEE Trans. Commun., vol. COM-25,
pp. 1004-1009, Sept. 1977.

[6] M. Abramovici, M.A. Breuer and A.D. Friedman,
Digital Systems Testing and Testable Design, IEEE,
Jan. 1998.

